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Abstract. The interaction between a trapped ion and a resonant laser standing wave is studied
under the analytical approximation. Periodic orbits next to the heteroclinic one and their stability
conditions are derived from the Rayleigh perturbation method. Theoretical analysis reveals the
stable periodic orbits to be embedded in the Melnikov chaotic attractor. The corresponding
numerical results show that fitting control parameters into the stability conditions can control
chaos in the system.

As a mesoscopic system, laser-cooled ions confined to a Paul trap have served as a simple
model to investigate classical and quantum chaos [1–5]. Recently, there has been much
interest in the interaction between a single-trapped ion and a resonant laser standing wave
[6–10]. The Melnikov analysis [11], the Lyapunov characteristic exponent [12] and the
numerical methods were used in these works. It was shown that chaos can occur in the
system consisting of a single two-level ion, a laser field and the trap. The parameter
region and conditions that lead to instability and chaotic motion were given analytically and
numerically [10].

In this paper, we base the study of this topic on the Rayleigh perturbation. Under the
secular approximation, we consider the small applied voltages to trap and the laser field in
a standing-wave configuration such that the single two-level ion system obeys the Melnikov
perturbed equation

ẋ = h0(x)+ εh1(x, t) |ε| � 1. (1)

By applying our perturbation technique [13, 14] to equation (1), we obtain the Rayleigh
series solution near the heteroclinic orbit. It is proved that the perturbed periodic orbits are
Lyapunov stable iff some relationships between physical parameters and initial conditions
are satisfied. The stability conditions contain Melnikov’s chaos criterion that implies the
stable periodic solutions being embedded in a chaotic attractor. In order to control chaos,
we must fit the control parameters into the stability conditions. The analytical results are
in agreement with the corresponding numerical results.
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For the considered ion system, the evolution of external and internal dynamics is
dominated by the Melnikov perturbed equation (1) with [10, 15]

x = (x, v) h0 = (v,−� sinx) εh1 = (0, qh1)

h1 = 2 cos(2τ)
(
x + π

2
− φ

)
.

(2)

Herex andv represent the position and velocity of the ion centre-of-mass;� is proportional
to the Rabi frequency, the energy recoil, and is inversely proportional to the square of the
micromotion frequencyω; q = ε depends on the specific geometry of the trap and the
applied voltage;φ is the relative position between the centre of the trap and the laser
standing wave;τ = ωt/2 denotes the dimensionless time. Substituting equation (2) into
equation (1) yields the two-dimensional equations.

ẋ = v v̇ = −� sinx + qh1(x, τ ) (3)

where the overdot indicates derivative with respect toτ . Suppose thatq is so small that the
term proportional to it may be regarded as perturbation added to the unperturbed equations

ẋ0 = v0 v̇0 = −� sinx0. (4)

Applying the Rayleigh perturbation expansions

x =
∑
i=0

qixi v =
∑
i=0

qi ẋi (5)

to equation (3) and equating the sum ofith-order terms to zero, we obtain the zeroth-order
equations (4) and theith-order equations

ẋi = vi v̇i = −�(cosx0)xi + hi(xi−1, τ ) i = 1, 2, . . . . (6)

The unperturbed equations (4) possess the well known heteroclinic orbit [10]

x0 = 2 arctan(sinhξ) v0 = ±2
√
� sechξ (7a)

ξ = ±(
√
�τ + C) C = Ar sinh[tanx0(τ0)/2]±

√
�τ0 (7b)

where τ0 is the initial time. Given equations (2) and (7), the Melkinov function simply
becomes [10, 11]

1(τ0) =
∫ ∞
−∞
h0 ∧ h1 exp

[
−
∫

TrDxh0(s) ds

]
dτ =

∫ ∞
−∞

v0h1 dτ. (8)

Previous work [10] calculated the integration (8) and pointed out that1(τ0) has simple
zeros, indicating the existence of stochastic behaviour for the orbits whose initial conditions
are sufficiently near the unperturbed heteroclinic orbit (7). The purpose of this paper is to
derive such orbits from equations (5)–(7) and to obtain a detailed analytical criterion for
controlling the Melnikov chaos.

By using our perturbation technique [13, 14], the general solutions of equations (6) can
easily be constructed as

xi = u0

∫ τ

Ai

v0hi dτ − v0

∫ τ

Bi

u0hi dτ (9a)

vi = u̇0

∫ τ

Ai

v0hi dτ − v̇0

∫ τ

Bi

u0hi dτ i = 1, 2, . . . (9b)

with arbitrary constantsAi andBi which may be adjusted by the initial conditions. Here
the functionv0 is given in equation (7) andu0 has the form

u0 = v0

∫
(v0)

−2 dτ = 1
4�
−1(sinhξ + ξ sechξ). (10)
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From equations (4) and (10) we have the equations

v̈0 = −�(cosx0)v0 ü0 = −�(cosx0)u0 v0u̇0− u0v̇0 = 1. (11)

Given equations (11), it is straightforward to show that equations (9) are general solutions
of equations (6). The properties of the solutions (9) are quite interesting. Obviously, these
solutions possess periodicity, sinceh1 includes the periodic function cos(2τ). For small
parameterq and finiteτ0, the initial conditions of the orbit (5) with equations (7) and (9)
are certainly near the heteroclinic orbit. However, theith-order corrected solutions (9) seem
to be divergent asτ → ±∞, becauseu0 and u̇0 tend to infinity at that time. This usually
means the solutions (5) are Lyapunov unstable [16]. However, fortunately, the instability
can be controlled by some necessary and sufficient conditions. That is to say, the solutions
(5) with equations (7) and (9) are Lyapunov stable iff the coefficient functions ofu0 andu̇0

in equations (9) satisfy the conditions

Fi± = lim
τ→±∞

∫ τ

Ai

v0hi dτ = 0 i = 1, 2, . . . . (12)

The necessity of the conditions is evident, because of the divergence ofu0. Applying
equations (12), (7), (10) and the l’Hospital rule to equations (9) and (6) results in the
superior limits

lim
τ→±∞xi = lim

τ→±∞hi lim
τ→±∞vi = lim

τ→±∞ḣi . (13)

For the small parameterq and the finitehi we therefore have

‖qixi‖ = [(qixi)
2+ (qivi)2]1/2 < δi i = 1, 2, . . . (14)

at all times whereδi are some small constants. This is just proof for the sufficiency of the
stability conditions (12).

Then we see how the dependence of conditions (12) on the integration constantsAi
leads to sensitivity of the orbits to the initial conditions. Setting(x ′, v′) and (x ′i , v

′
i ) are

another set of orbits (5) and (9) with the constantsA′i , B
′
i and the same zeroth-order terms

(x ′0 = x0), combining equations (5) with equations (9) and (7) we have

x − x ′ =
∑

(xi − x ′i ) = u0

∑(∫ τ

Ai

v0hi dτ −
∫ τ

A′i

v0hi dτ

)
−v0

∑(∫ τ

Bi

u0hi dτ −
∫ τ

B ′i

u0hi dτ

)
= Au0− Bv0 (15a)

v − v′ =
∑

(vi − v′i ) = Au̇0− Bv̇0 (15b)

with arbitrary constantsA and B depending on the integral constantsAi,A′i and Bi, B ′i
respectively. The constantsA and B will not equal zero unlessAi = A′i and Bi = B ′i
such thatx = x ′, v = v′. Someith-order small differences between the initial conditions
of (x, v) and (x ′, v′) will lead to the differentAi,A′i , Bi, B

′
i and the nonzeroA andB.

Thus, at least one of the orbits(x, v) and (x ′, v′) does not obey the conditions (12) if
Ai 6= A′i . Consequently, the differences (15) between the two orbits will tend to infinity as
τ → ±∞, because of the infiniteu0(±∞) and u̇(±∞). These clearly show that the orbit
(5) sensitively depends on the initial conditions.

We know the sensitivity to initial conditions being the general character of chaos.
Combining equation (8) with equations (12) we findF1+ − F1− = 1(τ0) = 0. That is,
the first-order stability conditions contain the Melnikov criterion for the onset of chaos.
This means the stable orbit given by equations (5) with equations (7) and (9) is to be
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embedded in the Melnikov chaotic attractor. In view of the Perron–Lyapunov characteristic
exponent [16], the largest Lyapunov exponent reads

λ(x) = lim
τ→∞(τ

−1 ln ‖x‖)
{
= 0 for Ai given by equations (12)

> 0 for the otherAi
(16)

with x being the orbit (5). Clearly,λ > 0 indicates the instability of the orbitx and the
caseλ = 0 is usually called the critical one. Thus equation (16) exhibits the sensitivity of
the stability to the initial constantsAi again and points out the stable orbits of the critical
case. The intersections of the stable and unstable orbits are determined by conditions (12).
Therefore equations (12) are really the necessary and sufficient conditions for the onset of
chaos. They supply a more detailed analytical criterion of chaos than the Melnikov-function
technique.

Further, we explore how to control chaos through conditions (12) and (16). A normal
technique [17] is to adjust the control parameters such that the Lyapunov exponent gets
to zero. In general, from equation (16) we cannot immediately determine the Lyapunov
exponent, since the initial constantAi cannot be set experimentally. Only by adjusting the
control parameters of the system to fit conditions (12), can we obtain the zero Lyapunov
exponent and control the chaos in the experiments. Let us see the most important case
of equations (12) withi = 1. Insertingh1 and equations (7) with positive signs into
equations (12), we get the first-order control conditions

F1± = lim
ξ→±∞

∫ ξ

A1

sechξ cos[2
√
�−1(ξ − C)][ π2 − φ + 2 arctan(sinhξ)] dξ = 0 (17)

with ξ = √�τ +C. These are two non-integrable integrations which necessitate numerical
calculations. In equations (17), the control parameters are the frequency� and positionφ.
The integration constantsC andA1 depend on the initial conditions which cannot be set
experimentally. In order to fit any one of equations (17) by adjusting the control parameters,
we first consider the effect of constantC. FromF1+ − F1− = 1(τ0) = 0 we calculateφ
as a function of� numerically for (a)C = 1, (b) C = 10 and (c)C = 100. In the
calculations, we have taken the upper and lower limits of the integration asξ = ±20, since
sechξ = sech(±20) ≈ 0 in the integrand of equations (17). The numerical results are
shown in figure 1. In this figure, theφ versus� curves become right lines as the values of
C increase. At the case of right lines, it is easy to fit the control conditions by changing the
values of� for different and greatC. Taking largeτ0 or makingx0(τ0) near to heteroclinic
point x0(τ0) ≈ π , from equations (7b) we can obtain the greatC. Fixed any greatC, for
exampleC = 10, numerical calculations from the first of equations (17)(F1+ = 0) leads
the control curves to figure 2, where (a) A1 = 0, (b) A1 = 2 and (c) A1 = 4. In figure 2
we see that changes of� values can easily fit the control curves, as our assertion. On the
other hand, figure 2 shows that adjusting the parameterφ from 2 to 5 can also fit the control
curves. Once any one of the control curves is reached, stable state of the system occurs and
remains indefinitely such that chaos is effectively controlled [14, 17].

In conclusion, we have treated a trapped two-level ion interacting with a resonant laser
standing wave analytically and numerically. The periodic orbits of the perturbed system
whose initial conditions are near the unperturbed heteroclinic orbit have been constructed.
The necessary and sufficient conditions determining the stability of the orbits have also been
established. These conditions contain the Melnikov criterion for the onset of chaos and
describe the intersections of the stable and unstable orbits. The stable periodic orbits which
depend on these conditions possess the sensitivity to initial conditions and are embedded in
the chaotic attractor. The numerical results on the basis of stability conditions showed that
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Figure 1. Plot of the control parameterφ versus� from F1+ − F1− = 1(τ0) = 0 for (a)
C = 1, (b) C = 10 and (c) C = 100.

Figure 2. Control curves fromF1+ = 0 in equations (17) forC = 10 with (a) A1 = 0, (b)
A1 = 2 and (c) A1 = 4.

for any initial constantsA1 and greatC chaos can be controlled through adjustments of the
control parameters� andφ. Such stable orbits will be useful for practicable problems.
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